Направления развития нормативно-методической базы управления жизненным циклом изделий авиационной техники в ПАО "Туполев"

М.М. Мазанов, А.М. Киров, В.В. Силаев (ПАО "Туполев")

Введение

Когда началось использование систем автоматизированного проектирования (CAD), это произвело революцию в организации проектно-конструкторских работ в машиностроительных отраслях, вызвало серьезные изменения в требованиях к знаниям, навыкам и методам работы конструкторов. Но изменения эти оказались локализованы в рамках рабочего места конструктора, а в лучшем случае – рабочей группы конструкторов. Даже создавая полноценные трехмерные геометрические модели разрабатываемых изделий, конструктор был вынужден переносить информацию на бумажный носитель в виде плоских изображений – проекций и сечений 3D-модели. При этом изображения, получаемые автоматизированными способами (стандартными опциями CAD-систем), как правило, не соответствовали требованиям ЕСКД, жестко регламентирующим оформление конструкторской документации, из-за чего требовалась доработка изображений и перенос их в регламентированные форматы. Таким образом, полезный эффект, вполне закономерно ожидаемый от внедрения цифровых технологий, оказался крайне низким, поскольку всё деловое пространство вокруг конструктора осталось в рамках прежних правил: согласование, передача производству, хранение, внесение изменений и пр. Одним словом, управление конструкторскими документами по-прежнему происходило по принципам и правилам, установленным более полувека назад.

Со временем в нормах ЕСКД стали отражаться требования (или наоборот – допущения), продиктованные внедрением автоматизированных средств – например, была введена серия стандартов ГОСТ ЕСКД 2.051... 2.057. Однако изменения эти носят скорее пробный характер и не претендуют на замену конструкторского документа в его классическом понимании на электронные модели. Даваемые ими возможности являются довольно ограниченными - ввиду того, что в сферах деятельности, пристыкованных к конструкторской работе, подобные тенденции не наблюдаются или отстают. С другой стороны, эти изменения сами отстают от развития технологий CAD и автоматизированных систем управления данными об изделии (PDM).

Таким образом, высветилась проблема острой недостаточности нормативно-методического обеспечения управления процессами жизненного цикла изделия в цифровой среде.

Выявление проблем

Развитие *PDM*-систем и постепенное их внедрение в процессы создания наукоемкой машиностроительной продукции привело эту ситуацию к критической. Использование *PDM* как единой информационной системы, в которой каждый участник работ является пользователем с интерактивным доступом, требует решения вопросов установления требований к самим создаваемым данным, регламентирования процессов и взаимодействия их участников, верификации результатов работ.

Последняя проблема оказалась особенно острой для предприятий оборонно-промышленного комплекса, заказчиками которых в основном являются государственные ведомства. Принимают работу (то есть подтверждают выполнение требований контрактов) военные представительства Минобороны, которые функционируют в довольно жестко формализованном формате устоявшихся и отработанных на практике нормативных документов.

С другой стороны, эти нормативные документы имеют определенные противоречия друг с другом, как в аспекте терминологии, так и в аспекте регламентирования порядка работ. В частности, для предприятий, разрабатывающих авиационную технику, фактически одновременно действуют:

- ГОСТ РВ 15.203-2001 Система разработки и постановки продукции на производство. Военная техника. Порядок выполнения опытно-конструкторских работ по созданию изделий и их составных частей. Основные положения;
- ГОСТ РВ 2.902-2005 Единая система конструкторской документации. Порядок проверки, согласования и утверждения конструкторской документации;
- Положение о создании авиационной техники военного назначения и авиационной техники специального назначения.

Соответственно, задача верификации результатов работ в среде *PDM* свелась не просто к установлению новых правил взаимодействия в цифровой среде, а к устранению уже имеющихся противоречий и выработке унифицированных решений (в перспективе – и для проектов по гражданской авиационной технике).

Классификация задач

Попытка решения вышеназванных проблем и создания единой нормативной базы была сделана в рамках одного из проектов в ПАО "Туполев". За их решение взялась рабочая группа, в состав

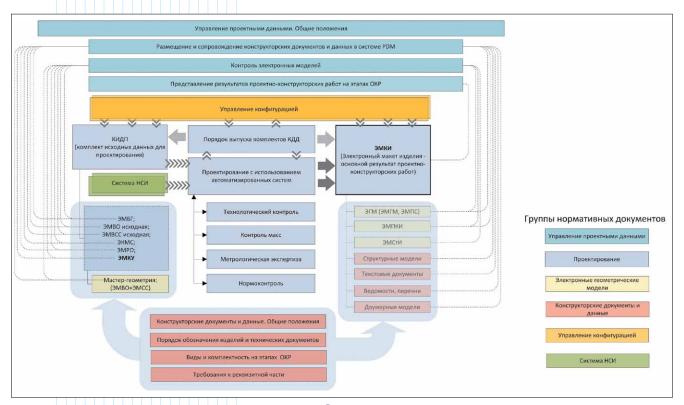
которой вошли специалисты АО НИЦ "Прикладная Логистика", конструкторы — члены проектной группы, представители дирекции программы и дирекции по качеству ПАО "Туполев", а также специалисты от Департамента управления ЖЦИ ПАО "ОАК".

Анализ проблематики показал целесообразность следующей классификации рассматриваемых вопросов:

- ✓ По процессам (видам деятельности):
- проектирование этапы разработки эскизного проекта (ЭП), технического проекта (ТП), рабочей конструкторской документации (РКД);
 - технологическая подготовка производства;
 - интегрированная логистическая поддержка;
 - послепродажное обслуживание.
 - ✓ По видам данных:
 - конструкторские документы и данные (КДД);
- электронные геометрические модели (как основная составляющая КДД);
 - технологические документы и данные;
 - электронные технологические модели;
 - технологическая документация;
- документация на изготовление технологической оснастки;
 - эксплуатационная документация и пр.
 - ✓ По видам деятельности:
 - управление проектными данными;

- управление конфигурацией;
- управление нормативно-справочной информацией;
 - управление моральным устареванием и пр.

Концепция развития нормативно-методической базы управления процессами ЖЦИ выражается в создании взаимосвязанных групп документов в каждом из вышеназванных направлений, увязанных с используемыми программно-техническими решениями и объединенных в единый комплект документации.


Текущее состояние

В настоящий момент сформирована архитектура комплекса нормативных документов по указанным вопросам (рис. 1); часть из них разработана, утверждена и применяется в практических работах подразделений ПАО "Туполев" (более подробно – ниже).

Группа нормативных документов "Проектирование"

Эта группа устанавливает основные принципы и методологию проектно-конструкторских работ при использовании систем *CAD/PDM*:

- основным результатом работ проектных этапов и этапа разработки РКД является электронный макет изделия – ЭМКИ;
- электронный макет изделия разрабатывается на основании комплекта исходных данных КИДП;

Puc. 1. Состав и структура нормативных документов, регламентирующих проектирование и разработку с применением CAD/PDM

- электронные геометрические модели КИДП и ЭМКИ создаются с привлечением технологии ассоциативных связей по следующей цепочке: базовая геометрия → исходная геометрия → мастер-геометрия → компоновочный макет (мастер-геометрия + компоновочные модели систем и распределения объемов) → ЭМКИ;
- все результаты работ подлежат утверждению по электронным процедурам выпуска с использованием *Workflow*-моделей *PDM*-системы;
- в процессе утверждения результаты работ проходят все необходимые виды контроля: согласование со смежными (профильными) службами, технологический, весовой метрологический, нормализационный контроль (с получением электронных виз исполнителей этапов согласования).

Группа нормативных документов "Конструкторские документы и данные"

Устанавливает основную терминологию рассматриваемой области, дает определения, общее предназначение и характерные особенности всех информационных сущностей, возникающих при выполнении проектно-конструкторских работ в среде PDM.

Введены основные понятия для структурированного хранения и обработки данных в системе PDM:

- информационный объект идентифицированная совокупность данных, "неделимая" в пользовательском интерфейсе, создаваемая и обрабатываемая в каком-либо отдельном приложении *PDM*-системы или во внешней информационной системе;
- информационный набор идентифицированная совокупность информационных объектов, созданная с какой-либо целью или отобранная по какому-либо признаку.

Определены формы представления результатов проектно-конструкторских работ и правила их трансформации:

- бумажная форма представления;
- электронная форма представления (документы и данные в виде локальных файлов);
- информационный набор (ИН) форма представления в системе PDM.

При полноценном внедрении автоматизированных систем управления ЖЦИ (*PLM*) использование бумажной формы представления и простой электронной формы минимизируется.

Установлены виды конструкторских документов и данных и других технических документов, разрабатываемых на проектно-конструкторских этапах, их классификация и правила кодирования, принадлежность к комплектам и этапам, правила присвоения обозначений. Также установлены требования к реквизитной части результатов проектно-конструкторских работ в зависимости от их видов.

Группа нормативных документов "Электронные геометрические модели"_

Определяет основные требования к электронным геометрическим моделям в зависимости от их видов и этапов разработки:

- геометрические модели состава КИДП (компоновочные модели, предназначенные для формирования электронного увязочного макета);
- геометрическая модель изделия собственной разработки (точная модель детали или сборочной единицы, предназначенная для запуска в производство) аналог основного конструкторского документа;
 - геометрическая (габаритная) модель ПКИ;
- геометрическая модель стандартизованного изделия:
- геометрические модели унифицированных и заимствованных изделий собственной разработки (упрощенные модели изделий, изготовление которых производится по другой документации как правило, на бумажных носителях).

Группа нормативных документов "Управление проектными данными"

Определяет основные принципы организации управления данными об изделии на стадиях жизненного цикла, устанавливает цели, задачи и методы эффективного управления проектом, определяет общие подходы к рациональной организации труда участников проекта и способы контроля технических данных об изделии и процессов их создания. Эта группа документов находится в стадии формирования. На текущий момент установлены функции и задачи контролеров электронного макета, обеспечивающих выполнение требований к результатам проектно-конструкторских работ, определяемых спецификой применения систем *CAD/PDM*.

Группа нормативных документов "Управление конфигурацией"

Регламентирует деятельность по идентификации конфигурации, управлению изменениями, учету статуса и аудиту конфигурации. Определяет принципы и подходы к членению изделию, на основании которых создается план управления конфигурацией применительно к конкретному проекту.

Группа нормативных документов "Управление нормативно-справочной информацией"

Регламентирует деятельность предприятия по управлению нормативно-справочной информацией (НСИ), направленную на обеспечение всех информационных систем, вовлеченных в управление ЖЦИ, заимствованной из нормативных документов и справочников информацией (материалы, стандартизованные и покупные комплектующие изделия и др.). Устанавливает требования к мастер-системе управления НСИ (МDМ)

и её взаимодействию с абонентскими информационными системами.

Таким образом, достигнутые результаты в целом покрывают потребности проектно-конструкторских этапов работ. При этом, заложенная в них идеология позволяет использовать их в качестве задела при создании полноценного комплекса нормативной документации по управлению жизненным циклом изделия и соответствующих учебно-методических материалов.

Направления развития и цели создания нормативно-методической базы управления ЖЦИ

Текущее состояние создания нормативно-методической базы управления ЖЦИ характеризуется рядом проблемных вопросов, относящихся к комплекту имеющихся документов (комплект частично требует актуализации), связанных с потребностью в методических указаниях и инструкциях, а также выработке организационных и технических решений для контроля выполнения требований документов.

Основными направлениями разработки нормативно-методических документов являются технологическая подготовка производства и выработка требований к технологическим документам и данным, управление конфигурацией, требования к разработке электронной эксплуатационной документации и электронной ремонтной документации, интегрированная логистическая поддержка и послепродажное обслуживание. Приоритетность развития и научно-методический задел по этим направлениям различаются, находясь в зависимости от практических и стратегических задач в рамках выполняемых в электронной среде проектов.

Эта концепция применяется в рамках пилотных проектов ПАО "ОАК" по внедрению технологии управления полным жизненным циклом (применительно к изделиям ПАО "Туполев"). При этом в целях минимизации затрат и консолидации научно-практического опыта предприятий авиационной отрасли в этой сфере, данная концепция может рассматриваться в качестве общего решения для всех пилотных проектов. Полученные по итогам пилотных проектов результаты будут учитывать особенности выполнения проектов в рамках различных авиационных программ, что позволит создавать на их базе унифицированные решения для организаций отрасли, которые будут максимально гибкими - для учета особенностей организационных структур и схем кооперации по разработке и производству. В перспективе такая унификация может быть положена в основу единой корпоративной (в рамках ПАО "ОАК") нормативно-методической базы управления жизненным циклом, общей для всех дочерних компаний.

Целью создания единой связанной нормативно-методической базы для всего жизненного

цикла изделия является управление всеми (на всех стадиях) инженерно-техническими данными об изделии, которые представляют собой сложную структурированную информацию различных видов, отличающихся как по содержанию, так и по способам создания и формам хранения и представления. Все эти данные рассматриваются как взаимосвязанные; при этом их создание, хранение, передача и использование (с сохранением логических связей между всеми компонентами) обеспечиваются программно-техническими решениями *PLM* в единой информационной среде. Для этого сложного объекта управления требуется детальное определение и осмысление всех его составляющих в едином ключе.

В иностранной нормативно-технической литературе для этого понятия применяется термин "Digital Mock-Up" (DMU). Однако используемый в отечественной практике термин "электронный макет", наиболее близкий к нему по смыслу перевода, подразумевает под собой лишь часть данных об изделии — совокупность геометрических моделей, описывающих состав, формы и размеры изделия.

Информационные сущности, составляющие *DMU* (геометрические данные, ограничения и технические данные и атрибуты), в зависимости от целей их создания или отбора по какому-либо признаку, характеризуют изделие (или процессы его создания) в следующих разрезах:

- ✓ По уровню декомпозиции изделия:
- полный макет (данные по всему изделию);
- макеты систем (данные по составным частям изделия).
 - ✓ По назначению:
 - проектировочный макет (КИДП);
 - конструкторский макет (ЭМКИ);
- производственный макет (технологические документы и данные)

и пр.

- ✓ По представлению информации:
- демонстрационный макет информация, предназначенная для презентации результатов этапов работ или функционирования конечного изделия;
- функциональный макет информация, предназначенная для установления и отслеживания функциональных связей составных частей;
- геометрический макет информация, предназначенная для отображения внешней геометрии (габаритных форм и размеров) изделия.

Заключение

Комплекс вопросов, связанных с полномасштабным использованием электронного макета на всех стадиях ЖЦИ, требует отдельной глубокой проработки, в том числе с учетом практики и опыта зарубежных разработчиков авиационной техники.

Таким образом, проблема формирования единой нормативно-методической базы управления ЖЦИ (применительно к стадии разработки изделия), сводится к решению следующих пяти задач:

- Д Формирование нового понятийного базиса (отсутствующего в действующей нормативной документации), связанного с использованием сложноструктурированных информационных конструкций, комплексов электронных моделей и баз данных в системах управления данными об изделии и требующих особых правил разработки и использования, отличных от правил ЕСКД.
- **2** Введение в обиход новых понятий и сущностей, таких как:
- комплект исходных данных для проектирования (КИДП) совокупность исходных данных для разработки, являющихся первоисточником информации для предварительной компоновки и увязки систем самолета и конструкции планера, а также для дальнейшей разработки на их основе ЭМКИ стадии разработки;
- электронный макет изделия (ЭМКИ) совокупность взаимоувязанных электронных моделей, чертежей, схем, расчетов и других документов и данных, определяющих состав, форму, взаимное расположение и свойства изделия и его

- составных частей в объеме и со степенью детализации, необходимыми для решения задач стадии разработки;
- структурированные отчетные данные (ведомости, перечни, структурные модели) данные, генерируемые средствами *PDM*-системы (то есть автоматически, в отличие от их аналогов на бумажных носителях) и являющиеся производными от информации, хранящейся в базах данных; служат для получения информации об изделии по заданным критериям.
- **З** Выработка возможных подходов к представлению и использованию таких информационных сущностей.
- 4 Разработка моделей организации процессов коллективной работы с такими информационными конструкциями, правил управления изменениями.
- Обеспечение информационной безопасности в проектах, содержащих секретную и конфиденциальную информацию.

Рекомендуемая литература:

International Standard ISO/FDIS 17599 Technical product documentation (TPD) – General requirements of digital mock-up for mechanical products.

